Phosphorylation of the TOR ATP binding domain by AGC kinase constitutes a novel mode of TOR inhibition
نویسندگان
چکیده
TOR (target of rapamycin) signaling coordinates cell growth, metabolism, and cell division through tight control of signaling via two complexes, TORC1 and TORC2. Here, we show that fission yeast TOR kinases and mTOR are phosphorylated on an evolutionarily conserved residue of their ATP-binding domain. The Gad8 kinase (AKT homologue) phosphorylates fission yeast Tor1 at this threonine (T1972) to reduce activity. A T1972A mutation that blocked phosphorylation increased Tor1 activity and stress resistance. Nitrogen starvation of fission yeast inhibited TOR signaling to arrest cell cycle progression in G1 phase and promoted sexual differentiation. Starvation and a Gad8/T1972-dependent decrease in Tor1 (TORC2) activity was essential for efficient cell cycle arrest and differentiation. Experiments in human cell lines recapitulated these yeast observations, as mTOR was phosphorylated on T2173 in an AKT-dependent manner. In addition, a T2173A mutation increased mTOR activity. Thus, TOR kinase activity can be reduced through AGC kinase-controlled phosphorylation to generate physiologically significant changes in TOR signaling.
منابع مشابه
Phosphorylation of the amino-terminus of the AGC kinase Gad8 prevents its interaction with TORC2
Cell proliferation, metabolism, migration and survival are coordinated through the tight control of two target of rapamycin (TOR) kinase complexes: TORC1 and TORC2. Here, we show that a novel phosphorylation of fission yeast Gad8 (AGC kinase) on the evolutionarily conserved threonine 6 (Thr6) prevents the physical association between Gad8 and TORC2. Accordingly, this block to protein interactio...
متن کاملTOR regulation of AGC kinases in yeast and mammals.
The TOR (target of rapamycin), an atypical protein kinase, is evolutionarily conserved from yeast to man. Pharmacological studies using rapamycin to inhibit TOR and yeast genetic studies have provided key insights on the function of TOR in growth regulation. One of the first bona fide cellular targets of TOR was the mammalian protein kinase p70 S6K (p70 S6 kinase), a member of a family of kinas...
متن کاملmTORC2 targets AGC kinases through Sin1-dependent recruitment.
The protein kinase TOR (target of rapamycin) is a key regulator of cell growth and metabolism with significant clinical relevance. In mammals, TOR signals through two distinct multi-protein complexes, mTORC1 and mTORC2 (mammalian TOR complex 1 and 2 respectively), the subunits of which appear to define the operational pathways. Rapamycin selectively targets mTORC1 function, and the emergence of...
متن کاملRab-Family GTPase Regulates TOR Complex 2 Signaling in Fission Yeast
BACKGROUND From yeast to human, TOR (target of rapamycin) kinase plays pivotal roles in coupling extracellular stimuli to cell growth and metabolism. TOR kinase functions in two distinct protein complexes, TOR complex 1 (TORC1) and 2 (TORC2), which phosphorylate and activate different AGC-family protein kinases. TORC1 is controlled by the small GTPase Rheb, but little is known about TORC2 regul...
متن کاملPsk1, an AGC kinase family member in fission yeast, is directly phosphorylated and controlled by TORC1 and functions as S6 kinase.
Target of rapamycin (TOR), an evolutionarily conserved serine/threonine protein kinase, plays pivotal roles in several important cellular processes in eukaryotes. In the fission yeast Schizosaccharomyces pombe, TOR complex 1 (TORC1), which includes Tor2 as a catalytic subunit, manages the switch between cell proliferation and differentiation by sensing nutrient availability. However, little is ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 203 شماره
صفحات -
تاریخ انتشار 2013